Codon Usage Patterns in Corynebacterium glutamicum: Mutational Bias, Natural Selection and Amino Acid Conservation

نویسندگان

  • Guiming Liu
  • Jinyu Wu
  • Huanming Yang
  • Qiyu Bao
چکیده

The alternative synonymous codons in Corynebacterium glutamicum, a well-known bacterium used in industry for the production of amino acid, have been investigated by multivariate analysis. As C. glutamicum is a GC-rich organism, G and C are expected to predominate at the third position of codons. Indeed, overall codon usage analyses have indicated that C and/or G ending codons are predominant in this organism. Through multivariate statistical analysis, apart from mutational selection, we identified three other trends of codon usage variation among the genes. Firstly, the majority of highly expressed genes are scattered towards the positive end of the first axis, whereas the majority of lowly expressed genes are clustered towards the other end of the first axis. Furthermore, the distinct difference in the two sets of genes was that the C ending codons are predominate in putatively highly expressed genes, suggesting that the C ending codons are translationally optimal in this organism. Secondly, the majority of the putatively highly expressed genes have a tendency to locate on the leading strand, which indicates that replicational and transciptional selection might be invoked. Thirdly, highly expressed genes are more conserved than lowly expressed genes by synonymous and nonsynonymous substitutions among orthologous genes fromthe genomes of C. glutamicum and C. diphtheriae. We also analyzed other factors such as the length of genes and hydrophobicity that might influence codon usage and found their contributions to be weak.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mutational Pressure Drives Evolution of Synonymous Codon Usage in Genetically Distinct Oenothera plastomes

Background: Most of the amino acids are encoded by more than one codon, termed as synonymous codons. Synonymous codon usage is not random as it is unique to species. In each amino acid family, some synonymous codons are preferred and this is referred to as synonymous codon usage bias (SCUB). Trends associated with evolution of SCUB and factors influencing its diversification in plastomes of gen...

متن کامل

Comparative complete genome sequence analysis of the amino acid replacements responsible for the thermostability of Corynebacterium efficiens.

Corynebacterium efficiens is the closest relative of Corynebacterium glutamicum, a species widely used for the industrial production of amino acids. C. efficiens but not C. glutamicum can grow above 40 degrees C. We sequenced the complete C. efficiens genome to investigate the basis of its thermostability by comparing its genome with that of C. glutamicum. The difference in GC content between t...

متن کامل

Genome-Wide Patterns of Codon Bias Are Shaped by Natural Selection in the Purple Sea Urchin, Strongylocentrotus purpuratus

Codon usage bias has been documented in a wide diversity of species, but the relative contributions of mutational bias and various forms of natural selection remain unclear. Here, we describe for the first time genome-wide patterns of codon bias at 4623 genes in the purple sea urchin, Strongylocentrotus purpuratus. Preferred codons were identified at 18 amino acids that exclusively used G or C ...

متن کامل

Gene expression level influences amino acid usage, but not codon usage, in the tsetse fly endosymbiont Wigglesworthia.

Wigglesworthia glossinidia brevipalpis, the obligate bacterial endosymbiont of the tsetse fly Glossina brevipalpis, is characterized by extreme genome reduction and AT nucleotide composition bias. Here, multivariate statistical analyses are used to test the hypothesis that mutational bias and genetic drift shape synonymous codon usage and amino acid usage of Wigglesworthia. The results show tha...

متن کامل

Synonymous codon usage in bacteria.

In most bacteria, synonymous codons are not used with equal frequencies. Different factors have been proposed to contribute to codon usage preference, including translational selection, GC composition, strand-specific mutational bias, amino acid conservation, protein hydropathy, transcriptional selection and even RNA stability. The review discusses these factors and their contribution to bias i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2010  شماره 

صفحات  -

تاریخ انتشار 2010